Session 01: Fundamentals to Digital Design
Monday, August 6, 2018 2:59 PM

Grasshopper
- Non Parametric vs Parametric
- Interface
 - Parameters and components
 - Objects
 - Connection
 - Object status
- Systems
 - Coordinate systems
 - Data matching: practice
 - Data structure: practice
- Parameter
- Math
- Set
- Vector
- Curve
- Surface
- Mesh
- Intersect
 - Mathematical vs physical: practice
- Transform
 - Euclidean, Affine, Morph: practice
- Display

Geometry
- Point, Vector and Line
 - Point
 - Setting a point
 - Kinds: 2d, 2f, 3d, 3f, 4d (4d with weight)
 - Operators: practice
 - Interchangeable with vectors: start(0,0,0), end(self), direction and magnitude: practice
 - Vector
 - Setting a vector: practice
 - Operators: +, -, cross and dot: practice
 - Line
 - Setting a line
 - Interchangeable with vectors: start, end, direction and magnitude: practice
 - Frame (Plane)
 - Components: point & vectors
- Curve
 - Curve as equation: \(x^2 + y^2 = 1 \)
 - Curve as function: \(x = \cos(a), y = \sin(a) \): parametrical(kinematic) description
 - Trace of point in space at certain time interval
 - Curve parameter(t) vs length factor(L): practice
 - Bezier: parametric curve / linear interpolation: de Casteljau's algorithm / degree: practice
 - \(y = x^2 \) and \(x = f(t), y = g(t) \) - differently expressed. In Rhino, curves are parameterized.
- Types of curves
 - Linear spline: polyline
 - Cardinal spline: interpolated curve: practice
 - Bezier span / Hermite interpolation (handle vs points): practice
 - NURBS (Non Uniform Rational B Spline): weight - 4d point: practice
- Curve parameter
 - Tangent (unit slope vector): practice: 1st derivative
 - Curvature: function of 1st and 2nd derivatives
 - Total curvature
 - Average curvature
 - Curvature
 - Curvature circle / osculating plane: practice
 - Positive / Negative / Inflection
- Normal (unit curvature vector)
- Binormal: cross product of T & N
- Rotation along binormal - curvature / rotation along tangent - torsion
- Continuity: \(G0(position), G1(tangent), G2(curvature) \) / evaluating: curvature graph: practice
- Curve property
 - Parametric description: \((u, v)\) domain
 - Always have 4 sides - trim?
 - Iso curves: graphical representation of any possible curves on the surface
 - Vectors: Normal, u & v, tangent plane
 - Normal section
 - Curvature
 - Principal, Average, Gaussian: practice
 - Types of surface: flat, ruled, synclastic, anticlastic, revolving: practice
 - Creating surface: loft, rail, rail, revolve, network, patch, drape: practice
 - Continuity: \(G0(position), G1(tangent), G2(curvature) \) / evaluating - zebra: practice
- Surface
- Polygon: Mesh: practice